

HYDRAULIC TURBOMACHINES

Exercises 3 Velocity Triangles

Parametric Study for a Velocity Triangle of a Francis Turbine

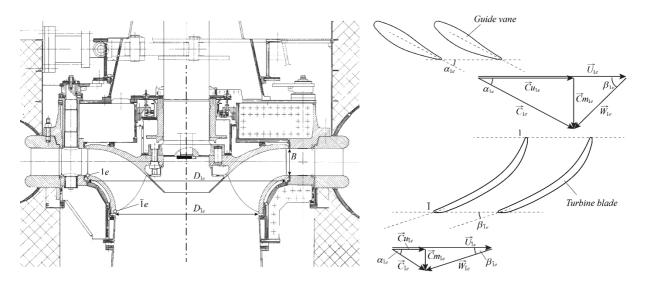


Figure 1. Scheme of the hydropower plant with its characteristics.

The meridional view of a Francis turbine and one example of the velocity triangle are sketched in Figure 1. For a Francis turbine, the angle of the absolute flow velocity at the inlet α_{1e} corresponds to the guide vane opening degree, and the angle of the relative flow velocity at the outlet corresponds to the outlet blade angle $\beta_{\overline{1}e}$, as shown in Figure 1. Referring to the figure, answer the following questions.

1) Give the expression of turbine rotational velocity U_{le} and $U_{\overline{\mathrm{le}}}$ as a function of the angular rotation ω and the inlet and outlet diameters, D_{le} and $D_{\overline{\mathrm{le}}}$ respectively.

$$U_{1e} = \frac{D_{1e}\omega}{2} \qquad U_{1e} = \frac{D_{\overline{1}e}\omega}{2}$$

2) Give the relation of the turbine discharge Q and the discharge Q_t traversing the runner as a function of the volumetric efficiency η_v .

$$Q_t = \eta_v Q$$

3) Give the meridional components of the flow velocity Cm_{1e} and $Cm_{\overline{1}e}$ as a function of the discharge Q and the volumetric efficiency η_v by using the variable defined in Figure 1.

$$Cm_{1e} = \frac{\eta_{\nu}Q}{\pi D_{1e}B},$$

$$Cm_{\overline{1}e} = \frac{\eta_{\nu}Q}{\frac{1}{4}\pi D_{\overline{1}e}^2}$$

4) Considering the vectorial relationship at the turbine runner inlet 1, write the relation of π , Cu_{1e} , Q, η_v , D_{1e} , B and α_{1e} .

$$Cu_{1e} = \frac{1}{\tan \alpha_{1e}} \frac{\eta_{\nu} Q}{\pi D_{1e} B}$$

5) Considering the vectorial relationship at the turbine runner outlet $\overline{1}$, derive the relation of π , $Cu_{\overline{1}_e}$, $U_{\overline{1}_e}$, Q, η_v , $D_{\overline{1}_e}$ and $\beta_{\overline{1}_e}$.

$$Cu_{\overline{1}e} = U_{\overline{1}e} - \frac{1}{\tan \beta_{\overline{1}e}} \frac{4\eta_{\nu}Q}{\pi D_{\overline{1}e}^2}$$

6) Derive the relation of the transformed specific energy E_t as a function of U_{1e} , $U_{\overline{1}e}$, Q, η_v , D_{1e} , $D_{\overline{1}e}$, B, α_{1e} and $\beta_{\overline{1}e}$.

$$E_{t} = \frac{1}{\tan \alpha_{1e}} \frac{\eta_{v} Q}{\pi D_{1e} B} U_{1e} - \frac{1}{2} \left(U_{\bar{1}e} - \frac{1}{\tan \beta_{\bar{1}e}} \frac{4\eta_{v} Q}{\pi D_{\bar{1}e}^{2}} \right) U_{\bar{1}e}$$

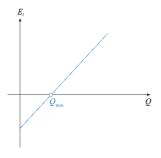
7) Considering the ratio of $\frac{U_{1e}}{U_{\overline{1}e}}$, derive the relation for transformed specific energy E_{ι} as a function of $U_{\overline{1}e}$, Q, η_{ν} , $D_{\overline{1}e}$, B, α_{1e} and $\beta_{\overline{1}e}$.

Considering the ratio $\frac{U_{1e}}{U_{Te}} = \frac{D_{1e}}{D_{Te}}$, the transformed energy E_t can be written as;

$$E_{t} = -\frac{1}{2}U_{\overline{1}e}^{2} + \left(\frac{1}{\tan\alpha_{1e}}\frac{D_{\overline{1}e}}{B} + \frac{2}{\tan\beta_{\overline{1}e}}\right)\frac{\eta_{v}Q}{\pi D_{\overline{1}e}^{2}}U_{\overline{1}e}$$

8) For a given rotational frequency of the runner, sketch the transformed specific energy E_t as a function of the traversing discharge Q_t , and derive the condition of minimum discharge Q_t^{min} to achieve positive specific energy.

For a given rotational frequency, the transformed power E_t is linearly increased as a function of Q.



In order to produce energy (E $_t > 0$ *), Q* $_t$ *must be greater than;*

24.10.2023 EPFL Page 2/4

$$Q_{t_{-\min}} = \frac{\pi D_{\bar{1}e}^2 U_{\bar{1}e}}{2 \left(\frac{1}{\tan \alpha_{1e}} \frac{D_{\bar{1}e}}{B} + \frac{2}{\tan \beta_{\bar{1}e}} \right)}$$

9) When the turbine is operated at the best efficiency point (BEP), express the transformed power P_t by necessary variables, considering the assumption of the best efficiency point $(Cu_{\bar{1}_e} = 0)$.

$$E_{t_{-}BEP} = \frac{1}{\tan \alpha_{1e}} \frac{\eta_{v} Q}{\pi D_{1e} B} U_{1e}, \ P_{t_{-}BEP} = \rho \frac{1}{\tan \alpha_{1e}} \frac{\eta_{v}^{2} Q^{2}}{\pi D_{1e} B} U_{1e}$$

Calculation of the best efficiency using a hill-chart

The $Q_{ED} - n_{ED}$ hill-chart of a Francis turbine with the iso-value curves of both the global efficiency η (red curves) and guide vane opening α (blue curves) is represented in Figure 3. The horizontal and vertical axes represent IEC discharge factor Q_{ED} and IEC speed factor n_{ED} , respectively. Using the hill-chart, answer the following questions. Use the following values if required.

 $D_{1e}=4.20$ m, $D_{\overline{1}e}=3.50$ m, B=0.60 m, n=3.88 Hz, $\eta_v=0.98$ and $\eta_{me}=0.97$ where η_v and η_{me} are the volumetric and mechanical efficiency, respectively.

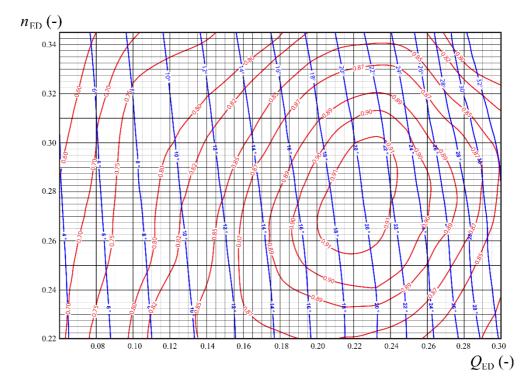


Figure 2. $Q_{ED} - n_{ED}$ hill-chart of a Francis turbine

10) Point out the best efficiency point in the hill-chart, and estimate the global efficiency $\eta_{BEP}^{hill-chart}$ and guide vane opening $\alpha_{BEP}^{hill-chart}$ at the best efficiency point (BEP).

24.10.2023 EPFL Page 3/4

The BEP is located at approximately at the center of the isoline with highest efficiency. Therefore, we can approximately expect an efficiency of 92-93% at the BEP by doing a qualitatively estimation on the hillchart in figure 2. For this machine, the estimated best efficiency is $\eta_{BEP}^{\text{estimated}} \cong 0.925$, and is achieved for 20°

11) At the BEP, the available head H and the discharge in the power plant Q are measured as H = 235 m and Q = 130 m³ s⁻¹. Calculate the transformed energy E_t at the best efficiency point. Then, calculate the available power at the BEP, i.e. P^{BEP} .

From point 9,
$$E_{t_{\perp}BEP} = \frac{1}{\tan \alpha_{1e}} \frac{\eta_{v}Q}{\pi D_{1e}B} U_{1e}$$
 the transformed energy is:

guide vane opening angle, $Q_{ED} = 0.225$ and $n_{ED} = 0.28$.

 $E_t^{BEP} = 2263.5 \text{ Jkg}^{-1}$ by considering a guide vanes angle of 20 degrees as found at point 10.

And so the available power (or output power):

$$P_{REP} = \eta_{me} P_t = \rho \eta_{me} \eta_{\nu} Q E_t = 279.4 \text{MW}$$

24.10.2023 EPFL Page 4/4